Molly S. Shoichet

Molly Shoichet

Molly Shoichet | University Professor & Canada Research Chair, Tissue Engineering
OOnt, BSc, (MIT), MSc, PhD (UMass Amherst), FAAAS, FBSE, FCAHS, FCAE, FRSC, FTERM

Main Appointments

  • Department of Chemical Engineering & Applied Chemistry
  • Institute of Biomaterials & Biomedical Engineering
  • Senior Advisor to the President on Science & Engineering Engagement

Additional Appointments

  • Terrance Donnelly Centre for Cellular & Biomolecular Research
  • Department of Chemistry
  • Institute of Medical Science

Contact Information

Donnelly Centre, 160 College Street, Room 514

+1 416 978-1460 (office)
molly.shoichet@utoronto.ca (email)
Shoichet Lab (web)

Administrative Assistant

Siewan Chan
+1 416 946-7926 (office)
adminshoichet@utoronto.ca (email)


Research Themes

Research Interests

Our research program requires a cross disciplinary approach where aspects of engineering, chemistry, and biology are applied to the field of Tissue Engineering. We are focused on enhancing the cell-material interaction through controlled polymer chemistry and engineering. The defining characteristic of neurodegenerative diseases, such as spinal cord injury, is the inability of injured nerve cells to repair themselves or regrow. The consequences of spinal cord injury are devastating, resulting in dramatically reduced communication between the brain and the periphery. In bridging polymer science and neuroscience, we are designing a nerve regeneration system that combines polymer synthesis/processing, drug delivery and surface modification. Specifically, we are investigating different methods of enhancing and guiding nerve regeneration and incorporating these methods into devices for in vivo investigations.

Creation of Scaffolds

Polymeric hollow fiber membranes (i.e. porous tubes) have been synthesized using a novel technique that combines centrifugal forces with polymerization. The methodology allows us to create HFMs with the mechanical and transport properties required for implantation into either the peripheral or central nervous systems.

To enhance regeneration within the HFMs, we are investigating haptotactic and chemotactic cues of regeneration. Haptotactic cues involve polymer surface/bulk modification with cell adhesive peptides. Chemotactic cues involve guiding axons with concentration gradients of neurotrophic factors.

Polymer Synthesis

Many polymers used in medicine were originally designed for other applications. We are designing and synthesizing both biostable and biodegradable polymers. The latter are polycarbonates and are being investigated for drug delivery, scaffold synthesis and peptide modification.

Novel fluoropolymers are being synthesized, incorporating a pendant hydroxyl group for further modification and an ether group for enhanced solubility in organic solvents. This synthetic approach dramatically improves the solubility and workability of fluoropolymers which are currently difficult to handle. The composition, mechanical and structural properties of the fluoropolymers are being investigated for use in coatings applications.

Bone Tissue Engineering Three-dimensional biodegradable scaffolds have been prepared with a macroporous geometry that is conducive to bone cell distribution and tissue formation throughout the scaffold, both in vitro and in vivo. Current research is focussed at the cell-polymer interface (collaboration with JE Davies).

Select Publications

Kang CE, Baumann MD, Tator CH, Shoichet MS. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cells Tissues Organs. 2013. 197(1):55-63.

Wood MD, Gordon T, Kim H, Szynkaruk M, Phua P, Lafontaine C, Kemp SW, Shoichet MS, Borschel GH. Fibrin gels containing GDNF microspheres increase axonal regeneration after delayed peripheral nerve repair.Regen Med. 2013 Jan. 8(1):27-37.

Tam, R.Y., Cooke, M.J., and Shoichet, M.S. A covalently modified hydrogel blend of hyaluronan-methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. Journal of Materials Chemistry, 22: 19402-11, 2012.

Owen, S.C., Doak, A.K., Wassam, P., Shoichet, M.S., and Shoichet, B.K. Colloidal aggregation affects the efficacy of anticancer drugs in cell culture. ACS Chemical Biology, 7: 1429-35, 2012.

Aizawa, Y. and Shoichet, M.S. The role of endothelial cells in the retinal stem and progenitor cell niche within a 3D engineered hydrogel matrix. Biomaterials, 33: 5198-205, 2012.

Vulic, K. and Shoichet, M.S. Tunable growth factor delivery from injectable hydrogels for tissue engineering. Journal of the American Chemical Society, 134: 882-85, 2012

Caicco MJ, Zahir T, Mothe AJ, Ballios BG, Kihm AJ, Tator CH, Shoichet MS. Characterization of hyaluronan-methylcellulose hydrogels for cell delivery to the injured spinal cord.
J Biomed Mater Res A. 2012 Nov 5.

Silva NA, Cooke MJ, Tam RY, Sousa N, Salgado AJ, Reis RL, Shoichet MS. The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials. 2012 Sep. 33(27):6345-54.

Stanwick JC, Baumann MD, Shoichet MS.  Enhanced neurotrophin-3 bioactivity and release from a nanoparticle-loaded composite hydrogel J Control Release. 2012 Jun 28, 160(3):666-75.

Wylie, R.G., Ahsan, S., Aizawa, Y., Maxwell, K.L., Morshead, C.M., and Shoichet, M.S. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nature Materials, 10: 799-806, 2011.

Perform an automatic PubMed search of this researcher’s publications